多维度下的向量 [Math 241] - Section 12.1

# The Key Spaces —— 空间维度

R\mathbb{R}: real numbers - 实数
e.x: 2, 0, -0.5, π\pi, ...

R2\mathbb{R} ^ 2: Two-dimensional plane/space - 二维平面

point in 2-dim space is pair of real numbers, such as (x, y)
二维平面中的点由一对实数组成

R3\mathbb{R} ^ 3: Three-dimensional plane/space - 三维平面

point in 3-dim space is triple of real numbers, such as (x, y, z)

Rn\mathbb{R} ^ n: n-dimensional plane/space - n 维平面

n-tuples of real numbers

# Vectors —— 向量

Motivation: Want to describe mathmatrically quantities, such as force, wind.

# geometric point of view

determined by:

  • direction
  • length / magnitude

e.x.

works only in R2\mathbb{R} ^ 2 and R3\mathbb{R} ^ 3
一般只能用来描述二维与三维,因为再高纬度我们也画不出来了。

# algebraic point of view

n-tuples of real numbers

Vectors in Rn\mathbb{R} ^ n:
a=<a1,a2,...,an>\vec {a} = <a_1, a_2, ..., a_n>
a1,a2,...,ana_1, a_2, ..., a_n are all real numbers

works only in any dimension

e.x.

a=<a1,a2>\vec {a} = <a_1, a_2>
\vec {}: arrow notaction
< > : angle brackets
a1a_1 : x-comprment
a2a_2 : y-comprment