向量运算与相关想法 [Math 241] - Section 12.2

# Arithmetric with vectors

# add/ subtract/ scale vectors

不同维度的向量无法相互加减乘除

# Geometric point of view

i.e.

# add

  • a\vec {a}的头与 b\vec {b}的尾相连

# scaling


# subtraction

# Algebratic point of view

i.e.
a=<a1,a2,...,an>\vec {a} = <a_1, a_2, ..., a_n>
b=<b1,b2,...,bn>\vec {b} = <b_1, b_2, ..., b_n>

# add

a+b=<a1+b1,a2+b2,...,an+bn>\vec {a} + \vec {b} = <a_1 + b_1, a_2 + b_2, ..., a_n + b_n>

# scaling

ca=<ca1,ca2,...,can>c \vec {a} = <c a_1, c a_2, ..., c a_n>

# subtraction

ab=<a1b1,a2b2,...,anbn>\vec {a} - \vec {b} = <a_1 - b_1, a_2 - b_2, ..., a_n - b_n>

# Length / magnitude

  • Geometric - in R2\mathbb{R} ^ 2 (or R3\mathbb{R} ^ 3)
    a=a1,a2\vec {a} = a_1, a_2
    length = \sqrt

  • Algebratic defination
    a=a12+a22+...+an2|\vec {a}| = \sqrt {a_1 ^ 2 + a_2 ^ 2 + ... + a_n ^ 2}
    a|\vec {a}| : length / magnitude of a.\vec {a}.

# Unit vector - related definition

vector of length 1
E.X.: <35,45><\frac {3}{5}, \frac {4}{5}>
since (35)2+(45)2=1\sqrt {(\frac {3}{5}) ^ 2 + (\frac {4}{5}) ^ 2} = 1

# Unit Basic Vectors

In R3\mathbb{R} ^ 3:

  • i=<1,0,0>\vec {i} = <1, 0, 0>
  • j=<0,1,0>\vec {j} = <0, 1, 0>
  • k=<0,0,1>\vec {k} = <0, 0, 1>

# Fact

Any vector a=<a1,a2,a3>\vec {a} = <a_1, a_2, a_3> in R3\mathbb{R} ^ 3 can be represented in terms of i,j,k\vec{i}, \vec{j}, \vec{k}.
a=ia1+ja2+ka3\vec {a} = \vec {i} *a_1 + \vec {j}*a_2 + \vec {k} *a_3

# BIG IDEA: LINEAR COMBINATION

linear combination of vectors (in Rn\mathbb{R} ^ n)
a1,a2,...,ak\vec {a_1}, \vec {a_2}, ..., \vec {a_k} :
c1c_1 a1\vec {a_1} + c2c_2 a2\vec {a_2} + ..., ckc_k ak.\vec {a_k}.

  • c1,c2,ckc_1, c_2, c_k : scalars (real numbers)
    linear combination of i,j,k\vec {i}, \vec {j}, \vec {k}

# Above face restated

Any vectors in R3\mathbb{R} ^ 3 can be represented as a linear combination of i,j,k\vec {i}, \vec {j}, \vec {k}
E.X.
<2,4,1><2, 4, 1> = 2i+4j+1k.2 \vec {i} + 4 \vec {j} + 1 \vec {k}.

# Proof of fact

i.e.
<a1,a2,a3>=a1i+a2j+a3k.<a_1, a_2, a_3> = a_1\vec {i} + a_2\vec {j} + a_3\vec {k}.
right side = a1i+a2j+a3k.a_1 \vec {i} + a_2 \vec {j} + a_3 \vec {k}.
= a1<1,0,0>+a2<0,1,0>+a3<0,0,1>a_1<1, 0, 0> + a_2<0, 1, 0> + a_3<0, 0, 1> - by defination of i,j,k.\vec {i}, \vec {j}, \vec {k}.
= <a11,0,0>+<0,a21,0>+<0,0,a31><a_1*1, 0, 0> + <0, a_2*1, 0> + <0, 0, a_3*1> - by defination of scaling vectors
= <a1+0+0,0+a2+0,0+0+a3><a_1+0+0, 0+a_2+0, 0+0+a_3> - by defination of addition
= <a1,a2,a3><a_1, a_2, a_3>
which is equals to left side

# Pizzle of the day - 每日思考题

For the Fact in Unit Basic Vectors before:
Is this same true for this 3 vectors: <1,0,1>,<0,1,1>,<1,1,0><1, 0, -1>, <0, 1, 1>, <1, 1, 0> in place of i,j,k?\vec {i}, \vec {j}, \vec {k}?